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ABSTRACT

Sufficient evidence exists from laboratory studies to suggest that

physiological measures can be useful as an adjunct to behavioral and subjective

measures of human performance and capabilities. Thus it is reasonable to

address the conceptual and engineering challenges that arise in applying this

technology in operational settings. The present paper will attempt to identify

such application-oriented issues and to provide an overview of the state-of-

this-art. Issues to be reviewed will include the advantages and disadvantages

of constructs such as mental states, the need for physiological measures of

performance, areas of application for physiological measures in operational

settings, which measures appear to be most useful, problem areas that arise in

the use of these measures in operational settings, and directions for future

development.

_q'I_ODUCTION

Prospects for the routine use of physiological monitoring in operational

settings are becoming more favorable. This situation is due _n part to

advances in recording technology, in part to research results that suggest the

usefulness of physiological data, and in part to an increasingly critical

perceived need for information about the status of the human operator in

complex man-machine systems.

One can sometimes gain an _mpr_ssion of the state of one's art by the

criticism it receives during informal exchanges. Not many years ago, those of

us involved in psychophysiological research, and in particular scalp-recorded

brain-wave measurement, were frequently asked to endure two comments:

"Surface recordings provide only a gross indication of brain function.

It's like putting an electrode on the outside of a computer and trying to

infer the processes going on inside."

and

"How can you interpret these field potential phenomena without

understanding the underlying mechanisms, if not the underlying physiology?"

Perhaps it is the company one keeps, but lately other comments have been

heard more frequently:

"You can't have electrode wires dangling from a pilot in the cockpit."

"Operators will never accept having their physiology monitored. It takes

too long to hook them up. It's too messy. Besides, pilots will be afraid

that you'll turn up some arrhythmia that could ground them."

25



"What do you do with all the electrical artifacts that are likely to show

up in operational settings? In the laboratory you can reject contaminated

data and keep collecting until you _et enough clean data. In the field you

will not have that luxury."

"There is no one-to-one relationship between (fill in your favorite

physiological sign) and performance. You would have to know a lot about

overt behavior in order to interpret concurrently recorded physiological

measures. And if you have the behavioral measures, why do you need the

physiological?"

Thus, the issues of concern seem to be changing, from questioning the basic

value of the measures to questioning how one implements them in applied

settings. There is no question that much basic research and theorizing remain

to be done in this field. We don't yet have a good understanding of the

functional significance of many psychophysiological phenomena. But, as funding

permits, progress is being made and physiological measures are proving to be

valuable adjuncts to behavioral and subjective measures in the assessment of

human performance (see Ref. 1 for a recent broad survey of this field). For

this purpose, derived measures of physiological signals can be useful as

dependent measures, regardless of how poorly we understand the underlying

physiology. A thorough understanding of source generator loci and cellular

mechanisms would, no doubt, enhance the interpretive power of these measures;

but as long as they vary systematically with experimental manipulations, these

indices can be used, as are behavioral and subjective measures, in the

monitoring, prediction, and diagnosis of performance.

Corresponding to this shift in the concerns of critics, one notices an

attitudinal change among practitioners. For years, basic researchers took a

rather cavalier approach -- that their role was to demonstrate the value of

psychophysiological measures of performance and to uncover the relationships

between these measures and conceptual information-processing constructs.

Problems related to the transition of this technology to applied task

environments and the implementation of these measures in the field could be

left to "the engineers." Now, one finds considerable interest, among both

researchers and funding agencies (one can speculate about the causal

relationships here), in beginning to address these deferred "engineering"

problems. Impetus has been provided by advances in a number of enabling

technologies -- micro-electronics, signal processing, wireless communications,

display technology, and artificial intelligence (AI). Consequently, laboratory

work is being conducted with an eye towards task scenarios and measurement

protocols that could, with modification, be used in the field. More research,

both basic and applied, is being conducted in simulators.

All of this represents progress and suggests the need to look closely at

the realistic prospects for applying physiological measures in operational

settings. The remainder of this paper will provide a necessarily brief

overview of some of these prospects, the approaches that are currently being

pursued, the state-of-the-art, and recommendations for future directions in

research and development. One theme, which corresponds to the topic of this

workshop, will be the prospects for quantifying operator mental states.

MENTAL STATE ESTI_TION

It is interesting that in the conceptual plans for such next-generation
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systems as those involving Super-Cockpits, one sees a recognition of the fact

that operator mental status is something the system should measure and to which

it must adapt. No doubt, this design goal follows from the recognition that,

under some operational scenarios, the human operator could be the limiting

factor for successful mission completion. These systems will be capable of

presenting more information than even a fully functional human can process, and

some of the threats faced in the operational environment, e.g., high G load or

chemical/biological/radialogical (CBR) agents, could disable the operator

without fatally impairing system hardware and software. Moreover, these

systems are expected to have sufficient automated subsystems and artificial

intelligence that the system could aid an overburdened operator or, to some

extent, take over for an impaired operator.

Certainly, therefore, the ability to assess the functional mental status of

the human operator is of critical importance in these systems, and would be

useful to the designers of many less exotic systems. But how far can we take

this concept? Can one conceptualize functional mental status in terms of a

finite number of discrete mental states? Is there some value to being able to

classify the human operator from moment to moment as being in a state of high

or low workload, fatigue, boredom, confusion, stress, or any of the numerous

other explanatory constructs that we invoke, even informally, in interpreting

our data or in designing our man-machine interfaces?

Typically, these constructs are operationally defined in terms of

experimental variables. Beyond that, it is not yet clear whether such discrete

states exist, or with what taxonomy they should be classified. Operator

effectiveness is ultimately defined in terms of behavioral output. However,

there seems to be both diagnostic and prescriptive value in attempting to

develop such a taxonomy of mental constructs, rather than focusing just on

observable task performance. For example, task performance may deteriorate for

a wide variety of reasons. An operator may miss an alarm signal either because

he was cognitively overloaded or because he was bored and not sufficiently

vigilant. A system designer, or co-pilot, would take different remedial

actions, depending on which of these "states" led to the degradation in

performance. Furthermore, many task environments allow the human operator to

function with some spare capacity such that, to some extent, increased task

demands can be met with increased effort in order to maintain behavioral output

at a relatively constant level. In such situations, mental state indices may

predict susceptibility to an impending deterioration in performance, should

task demands increase still further. Finally, when task demands are low, there

may be little behavioral output from which one can gauge the status of the

operator. A sense of the operator's mental state in such situations could be

used to infer whether or not such lack of responding was appropriate and the

extent to which the operator is prepared to respond appropriately should

conditions change. Therefore, the diagnostic and, hopefully, prescriptive

value of mental state constructs are somewhat akin to that of clinical

syndromes. Analogous to the different treatments which may be prescribed

depending on a clinical diagnosis, inferences about the mental states which

underlie an observed performance deficit may suggest alternative design or

operational "treatments."

The danger in using mental state conceptualizations to explain data, of

course, lies in our tendency to think that if we can label something, we have

understood it. Terms like "boredom" may not imply the same "syndrome" to

everyone. Therefore, until we have sufficient data to define what are the
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distinguishing features and performance-related consequences of "boredom," it
is imperative that we continue to operationally define our use of such terms.

VALUE OF P]IYSIOLOGICAL NFASURE$

Regardless of the stock one puts in the explanatory power of mental states,

it follows from the above discussion that it would be unwise to evaluate and

predict an operator's ability to perform solely from observing behavior on a

primary task. Performance on secondary tasks can be instructive for measuring

the processing capacity entailed by a primary task. However, with this

approach it is difficult to ensure that the operator always gives mental

priority to the primary task, the results may be of questionable validity if

used to generalize to situations in which the primary task is performed alone,

and incompatibilities between the behavioral responses required by the two

tasks may make it difficult to draw inferences about the demands placed on

perceptual or decision-making processes. Moreover, the sort of contrived

secondary tasks that have often been used in laboratory studies are clearly not

acceptable in operational settings, so secondary task measures must be found

among the activities that the operator is doing in the course of normal

operations.

Simply asking the operator for subjective ratings of his perceived state is

often useful, but is also fraught with difficulties. The operator may not

realize that his environmentally-defined workload is high when, in fact, it

is. Furthermore, such subjective ratings tend to be unreliable when

administered in operational settings while the operator is simultaneously

trying to maintain task performance, and the mere act of completing the rating

itself, of course, constitutes an additional task burden on the operator.

For these reasons, there is considerable appeal to the prospects of gaining

additional information about the functional status of operators from their

physiological signs. As discussed later in this paper, much evidence now

suggests that, if interpreted in conjunction with behavioral and subjective

measures, physiological indices offer the possibility of objectively inferring,

not only the general physical fitness to perform, but also the cognitive status

of an operator. Physiological measures can often be used to confirm the

conclusions derived from behavioral or subjective measures. There are also

instances in the literature of physiological measures providing complementary

information regarding cognitive activity to that which is available from
behavioral measures.

While there is a certain intuitive appeal to the objectivity and

non-intrusiveness afforded by physiological measures of mental processes, the

possible limitations of this technology have been pointed out by a number of

critics. Johnson (Ref. 2) has listed several typical concerns:

Most research studies have used performance changes to interpret

physiological changes; it is the inverse problem, using physiological

indices to predict performance, that is of interest in operational

settings, and most attempts to take this approach have been disappointing.

o There are not specific physiological response patterns associated with

specific behaviors or specific states; task difficulty plays an important

mediating role.
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There are large individual differences in physiological responses; response

differences due to individual response stereotypy tend to be larger than

differences due to situational response stereotypy.

Zacharias (Ref. 3) has likewise faulted most physiological work for failing

to take account of the effects of task difficulty on the measures of interest.

He also points out that while attempts to more fully characterize physiological

status by creating a vector of physiological indices may provide increased

correlations with, for example, measures of workload, there can actually be a

reduction in the statistical significance of such correlations, as "an

increasing number of noisy physiologic indicators are included in the actuation

vector."

While these criticisms are well-taken and must be addressed by those

wishing to use physiological measures of performance, they pose no

insurmountable problems for the knowledgeable application of physiological

monitoring technology. It is possible to deal with, and in fact take advantage

of, the manner in which physiological indices reflect task difficulty (see, for

example, Samaras 'I paper in the present Proceedings). The irrefutable fact that

individual differences exist, may likewise be turned to our advantage. In most

operational settings we are dealing with highly trained operators, and it is

technologically possible to customize the parameters of a monitoring system for

the individual operator. Finally, the question of whether or not unique

configurations of physiological patterns can be associated with particular

mental states may be moot, if one assumes that interpretations can be based on

changes in physiological indices viewed in conjunction with changes in operator

behavior or system performance. In other words, one rarely wou'd be faced with

the need to classify operator state in an absolute sense. The more frequent,

and more manageable, challenge would be to classify changes in state or

functional status, in relative terms, with reference to task performance and

other behavioral data.

AREAS OF APPLICATION

Physiological measures can be useful in operational settings for a variety

of purposes. Other papers in this session have presented some specific

operational settings of interest. Most uses can be seen to fall into one of

the following categories:

System Design. Reducing operator workload and drawing an operator's attention

to certain task-related stimuli are often design goals. To the extent that

physiological measures are reliable indices of these mental constructs, they

can be used to make design decisions. For this group of applications,

recording in facilities that simulate the operational environment is useful,

data analysis can be done off-line, and, consequently, we have the luxury of

dealing with measures based on derived indices such as average waveforms.

Applications of this sort would include:

o Choosing among alternative hardware or software.

o Choosing among alternative procedures.

iSamaras, George M: Towards a Mathematical Formalism of Performance, Task

Difficulty, and Activation. NASA CP 2504, 1988, pp. 43-55
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O Assessing the fidelity of simulation.

o Use as a debriefing tool, to probe operators with additional questions,

after-the-fact, about the times during a recorded scenario when the

physiological signs suggested, for example, that the operator was stressed

or distracted.

0n-line_ Real-time Applications. To the extent that physiological indices of

performance can be extracted on one or a few trials (i.e., from single epoch

recordings), and it is feasible to derive these indices in real-time in the

operational setting, they would be useful in closed-loop man-machine systems.

In general, this group of applications would involve the feedback of

physiological information from the operator to the machine with which he is

interacting, so that decision-making algorithms that reside there can modify

the operator's task or displays accordingly. This group of applications is

perhaps most demanding, because of the need for real-time turnaround of the

measures of interest. Applications of this sort would include:

Assessing the general state of the operator, to determine whether he is fit

to be "in the loop" at all.

Dynamically allocating tasks between the human operator and onboard AI,

depending on workload.

Checking whether the operator attended to events that the onboard AI

flagged as significant, as well as detecting instances in which the

operator realizes he made an error, so that he has an opportunity to

correct himself.

P_rsonn@l SeleGtion and Training. To the extent that physiological measures

reflect cognitive processes for which there are significant individual

differences, these measures may prove useful for selecting personnel and

monitoring the progress of an individual's training. The challenge here is to

define measures that are predictive of future performance. As with system

design applications, we would frequently be able to process the recorded data

off-line and deal with derived measures, without the constraints of realTtime

turnaround. Some applications of this type include:

o Staffing high workload tasks or environments with individuals who are well-

suited to handle them.

o Channeling personnel into jobs that take advantage of their cognitive

styles.

o Determining skills in an individual's training program that remain to be

mastered by identifying the aspects of a task that cause high workload.

THE MOST PROMISING PHYSIOLOGICAL MF_..KSURES

The research literature provides considerable evidence to suggest that a

number of physiological measures will be useful for the applications mentioned

above. It is beyond the scope of this paper to attempt a comprehensive review

of this literature. However, in the present section a cursory overview is

offered, to provide some indication of which indices of central and peripheral
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sweats, and moves about in performing his duties. In addition, physiologically

generated artifacts, most often from eye movements and blinks, or skeletal

muscle activity, can likewise contaminate the recordings. While useful

recordings of EEG have been reported in-flight (e.g., Refs. I0, ii),

significant engineering advances are required in electrode application, signal

processing, and artifact rejection before such recordings could be used

routinely.

Event-related Potentials (ERPs). ERPs are also voltage fluctuations recorded

from the scalp, but those which are time-locked to events, usually external

stimuli. Transient ERPs are characterized by the amplitude, latency from

stimulus onset, and scalp distribution of the various component peaks in the

waveform. The stimulus-locked brain activity is typically examined after

signal averaging over numerous presentations of the same event, although single

trial analysis techniques are an active area of investigation. ERP recordings

in operational settings are subject to the same technical constraints as those

of ongoing EEG.

Various ERP components have been shown to vary reliably with cognitive

processes (see review in Ref. 12), including selective attention (e.g., Ref.

13), expectancy (e.g., Ref. 14), discrimination processes (e.g., Ref. 15) and

response preparation (e.g., Ref. 16). In contrast to the findings regarding
reo_alc_ u,Lau ,L_. shown very encouragingongoing EEG, there is a body of .... '" _" _ _-s

relationships between ERP indices and workload. Tbis work, by Donchin,
9

Wickens, and colleagues, is reviewed _n the M_u_son, _ et al. paper in the

present Proceedings. There is evid_ne_ that ERPs may be used to reveal

.............. _ ..... _ _ .... _- to _,_o_ _,_,, _ apparent from

behavioral measures alone. For example, P300 ]steney has been shown to vary

with only a subset of the manipulations that affect overt reaction time,

suggesting that the timing of P300 indexes the completion of stimulus

evaluation processes, independent of response set-orion processes (e.g., Ref.

17). In certain situations, P300 amplitude appears to be a reflection of

additional variables, for example those which affect the willingness to take

risks (e.g., Ref. 18).

Steady-state ERPs are recorded in response to a rapidly oscillating

stimulus, usually a light or sound. They are usually quantified in terms of

amplitude and phase delay at the frequeucy of stimulation, and can be

calculated after only several seconds of stimulation. Steady-state EF_Ps

elicited by rapid, periodic stimulation by a checkerboard have also been

reported to reflect workload when the checkerboard was presented concurrently

with task performance (e.g., Ref. 19). This result is surprising, given that

steady-state responses had been previously thought to reflect strictly sensory

processes. The effect needs to be further examined to rule out the possibility

that peripheral changes in the visual system, such as accomodation, could be

varying with task difficulty and thus mediating the changes in the steady-state

response.

ElectrooculoKraphy (EOGI. EOG recordings are derived from electrodes on the

face near the eyes and can be used to monitor eye movements, eye blinks, and,

2}iunson, Robert C.; Horst, Richard L.; and Mahaffey, David L.:

TASK ERPs Related to Different Aspects of Information Processing.

NASA CP 2504, pp. 163-178.

Primary
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nervous system activity, of the many that can be recorded non-invasively from

behaving humans, appear most promising for near-term application.

Although there is considerable overlap in the measures that appear useful

for different kinds of applications, a distinction should be made between the

use of physiological measures to indicate the basic fitness of the operator to

perform his tasks and the use of physiological measures to infer cognitive

status. The former applications entail the monitoring of vital signs to

indicate relatively gross impairments in physical well-being u e.g., G-induced

loss of consciousness or gray-out, exposure to CBR agents, motion sickness,

heat stress, traumatic injury, heart attack. The latter applications entail

the analysis of more subtle physiological changes related to task performance,

so as to infer mental states such as high workload, fatigue, or inattention.

The following overview focuses on those measures with a demonstrated

relationship to operationally defined manipulations of workload, stress,

fatigue or boredom. While most of these relationships have been demonstrated

in laboratory settings with non-real-time processing of the data, some have

been recorded successfully in operational settings and all hold at least the

promise of being feasible to derive in real-time. Typical quantitative

measures that are derived from each physiological sign are presented, technical

problems in recording these measures in operational settings are discussed, and

examples of the evidence relating these measures to the psychological

constructs of interest are mentioned. More extensive discussions of the

prospects for using physiological measures in operational settings may be found

in 0'Donnell (Ref. 4) and Gomer (Ref. 5).

ElectroencephaloEraphy (EEG). The EEG consists of voltage fluctuations

recorded from two or more sites on the scalp, Ongoing EEG is usually

quantified in terms of its frequency composition and amplitude asymmetries.

Other measures, such as the coherence between the activity recorded at various

pairs of scalp sites, also appear to be useful (e.g., Ref. 6).

Changes in the predominant frequencies in the EEG with levels of arousal

and activation have been known for some time (e.g., Refs 7, 8). An alert

person performing an engaging task shows predominantly low amplitude, fast

frequency (beta) activity. An awake, but less alert, person shows an increased

incidence of high amplitude, alpha (8-12 Hz) activity. With the onset of

drowsiness, slower frequency theta (4-7 Hz) activity enters the spectrum and in

the early stages of sleep, very h_gh amplitude, slow (1-3 Hz), delta waves

predominate. It is unlikely in operational settings that operators would lapse

into deeper, so-called "paradoxical," stages of sleep. The generalized effect

of stress, activation or arousal is, therefore, a shift towards the faster

frequencies, often with an abrupt blocking of the alpha rhythm (e.g., Refs. 8,

9). Fatigue and boredom generally shift the spectrum in the other direction,

towards the lower frequencies. Derived measures of ongoing EEG have not yet

proven to be reliable indicators of workload.

Aside from the general problems of isolating the physiological recordings

from environmental sources of electrical noise and deriving the measures of

interest in near real-time, there are several technical problems in recording

EEG and related measures in operational settings. Movement of the electrodes

relative to the scalp causes severe electrical artifacts, and it is difficult

to ensure firm contact in environments where the operator wears a helmet,
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to a limited extent, direction of gaze and eye closure. The EOG reflects

changes in the electric dipole formed between the cornea and the retina. While

these potentials interfere with scalp-recorded electrophysiological measures

such as EEG and ERPs, measures derived from the E0G itself have been shown to

reflect operators' cognitive state.

Blink rate increases reflect the deterioration in attention and performance

which occur over a prolonged task (e.g., Refs. 20, 21). Additionally, blink

durations have been shown to increase with time on task (Ref. 22). Thus,

increases in both blink rate and duration may indicate fatigue or lack of

vigilance. As workload increases, blink rates decrease and the latency of the

blink, after presentation of the stimulus of interest, increases (Ref. 23).

Moreover, blinks during visual tasks were found to be of shorter duration than

those in auditory tasks (Ref. 22). The pattern of these results are consistent

with the notion that as visual information processing demands increase, eye

blinks reflect the brain's attempt to take in more visual input.

Blinks are robust and easy to record, because they are of relatively high

amplitude and predictable waveshape. Measures of blink frequency and latency

should, therefore, be feasible even in somewhat noisy environments. Measures

of blink duration will, of course, require relatively noise-free signals.

Eye Position and Pupil Dilation. Eye movements and fixations, and pupil

dilation, are usually detected by photo-optical techniques and, therefore, are

measures that can be gathered without sensors that touch the subject. Eye

position is inferred from corneal reflectance and is usually quantified in

terms of direction of gaze and dwell times as the eye scans the environment.

Pupil size is measured in millimeters.

Dwell time on various displays on an instrument panel has been shown to

vary systematically with workload (Ref. 24). Both tonic levels of pupil size

over long durations of task performance and phasic responses elicited by

task-relevant stimuli have been shown to be sensitive to cognitive variables.

Tonic dilations seem to be a reliable index of activation and arousal (e.g.,

Ref. 9). In addition, consistent phasic increases in pupil dilation have been

associated with increases in task difficulty and workload (e.g., Refs. 25,

26).

Because both these indices are dependent on maintaining a beam of light on

the cornea, they are limited to environments, such as fixed-base simulators, in

which there is minimal head movement by the operator. Eye trackers are

becoming more sophisticated, but head movements beyond about one cubic foot

take the eye out of range of the presently available photo-sensors. It is

likewise difficult to maintain a fix on the eye in a high-vibration

environment. Further confounds can be introduced by the fact that pupil size

is responsive to non-specific factors such as ambient illumination, color, and

depth of the visual field, which are difficult to control in operational

settings.

ElectrocardioEraphy (ECG). ECGs are a widely used, easily recorded index of

cardiovascular activity that is obtained from a two- or three-electrode array

on the body. The ECG signal may be analyzed in terms of its basic timing

(heart rate or period) or its morphology (e.g., amplitude of the T-wave).

Derived measures from the ECG, given the detection of the R-wave as the basic

datum, include first-order measures such as rate per unit time and change in
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heart period across beats. Second-order analysis may include rate-of-change

measures, maximum and minimum beat-to-beat periods within an epoch, and methods

based on time-series analysis of the beat-to-beat intervals.

While heart rate has been shown to generally increase with stress (e.g.,

Ref. 27) and activation (see review in Ref. 9), the heart rate response to

stimuli in a task environment is more often characterized by a complex pattern

of deceleration and acceleration. The results of numerous (but not all)

relevant studies are consistent with a hypothesis put forth by Lacey (Ref. 28),

that heart rate deceleration reflects a receptivity to external stimulation

whereas accelerations occur if the situation is found, after initial attention,

to warrant an increase in energy release. Heart rate increases during periods

of increased workload, for example during rake-offs and landings, have been

reported (e.g., Refs. 29, 30) but others have not found heart rate to be

sensitive to the cognitive workload of simulated flight (Ref. 26).

More consistent relationships with workload have been reported for

heart-rate variability. The general finding has been that, with increased

attention and workload, heart-rate variability decreases (e.g., Refs. 31, 32).

The most frequently used technique to reveal this workload effect has been a

spectral analysis of the beat-to-beat time interval data with a focus on the

power in the 0.I Hz band (e.g., Ref. 33). Of particular interest has been the

component of heart-rate variability related to respiratory sinus arrhythmia.

because of the many influences on the beat-to-beat regularity of the heart,

this one reflects mediation by the central nervous system. An approach to

quantifying sinus arrhythmia, which makes fewer assumptions about the

statistical properties (i.e., stationarity) of the data than those based on

spectral analysis, is that of vagal tone. Porges3 (see Ref. 34 and paper in

this Proceedings) has developed a moving polynomial filter technique that

removes the slowly shifting baseline from the inter-beat interval data over

time in order to reveal the faster oscillations due to respiratory sinus

arrhythmia. In the few instances _n which this "vagal tone" measure has been

compared to the measure based on power in the 0.i Hz band, vagal tone has

proven to be the more sensitive indicator of the experimental manipulations

(Ref. 35).

Heart rate measures have been successfully recorded under extremely

demanding conditions (e.g., Refs. 36, 37, 38).

Respiration. A number of techniques have been proposed for measurement of the

basic respiratory signal. As a class, girth measurements of the thorax and/or

the abdomen using mercury-in-silastlc tubing strain gauges are simple,

non-invasive, and reliable. If possible, both thoracic and abdominal

components of the respiratory motion should be monitored, since it is possible

to derive an adequate measure of respiratory volume from the combined signals.

The principal measures are respiratory rate, average volume (if composite), and

parameters related to the timing of inspiration, inspiratory pause, expiration,

and expiratory pause. Tidal volume, the volume of air expired, can be sensed

by thermistors mounted unobtrusively in an oxygen mask. Minute volume may vary

independently of tidal volume and can be measured in the same way.

3porges, Stephen W.:

CP 2504, pp.57-64
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Respiration measures deserve more attention than they have received (e.g.
Ref. 39) for detecting operator incapacity. There is also some indication that

respiration becomes more shallow, regular and rapid with increased workload

(Ref. 40).

Electromyo_raDhy (EMG). EMG recordings from surface electrodes can be used to

detect muscle tone or movement mediated by selected muscle groups, if they can

be recorded without contamination by task-related movements. Several sites

have been suggested as indicating overall tension levels, particularly forehead

or masseter muscle placements. Since the signal is a complex, irregular one,

the preferred strategy for determining general tension levels is to integrate

the primary signal over a relatively short time constant, typically between 0.i

and 0.5 seconds, and to subsequently analyze only this average measure. The

measures typically derived from the average muscle tension level are mean

level, variance of the level, and minimum and maximum level for each epoch. If

appropriate, further measures such as the number of increases above a criterion

level can be obtained.

Muscle tension increases with arousal, stress and activation (e.g. Refs. 9,

41) and increased EMG activity is associated with the onset of fatigue.

Several studies have reported relationships between increased EMG activity and

increased workload or task difficulty (e.g., Refs. 42, 43), but it is as yet

unclear as to how sensitive EMG is as an index of small changes in workload.

Other Measures of Interest. A number of other physiological measures deserve

"honorable mention," either because they appear to be worthwhile indicants of

cognitive status, but without the near-term prospects for application in the

field, or because they appear to be related to cognition in only a general

sense:

o Ongoing and stimulus-locked measures based on magnetoencephalography

recordings are particularly promising because the sensor does not touch

the subject's body and because inferences can often be made about the depth

from which activity arises. Evoked magnetic fields have been correlated

with attention and subjective probability in a paradigm similar to that

used for ERP studies of P300 (Ref. 44). However, the sensors now in use

must be supercooled with a large container of liquid helium and the subject

must maintain a posture which keeps his orientation and distance from the

sensor constant.

o Blood pressure and blood flow can provide useful information about

cardiovascular status which, to some extent, complements that available

from heart rate and heart rate variability. However, methods for recording

these indices non-lnvasively have not yet reached the point that they would

be useful in an electrically noisy, high vibration environment, or one in

which the operator had to be free to move significantly.

Advances are being made in the sensor technology for monitoring body

temperature, with the development of miniaturized telemetry systems that

can be swallowed as a "pill" and used to monitor core temperature as it

passes through the gut, and with the development of improved skin

temperature sensors. This technology promises to be of use in environments

where heat stress is a threat, and phasic temperature changes have been

related to mental workload (e.g., Ref. 45) as well as physical workload.
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o Measures of skin resistance and skin conductance are relatively easy to

record, and have some value for indicating phasic changes in arousal and

stress, but they have yet to prove themselves as specific enough to be of

utility for inferring cognitive states.

PROBI.EIq_.F.AS

There is no question that significant technical problems remain to be

solved before physiological monitoring technology will come into widespread use

in operational settings. But it is also apparent that recent technological

developments offer new possibilities for solving many of these problems and

that researchers, and funding agencies, are only now turning their attention

towards these prospects. Some areas of concern are the following:

Instrumentation and Operator Acceptance. The operator's reluctance to be

instrumented is an often-mentioned impediment to implementation of

physiological monitoring in operational settings. Operators find conventional

recording paraphernalia cumbersome and obtrusive. It is time-consuming to have

electrodes pasted on and removed. They are also threatened by the possibility

that in submitting to recordings, an unanticipated medical problem may be

detected that could call into question their eligibility. When faced with the

prospects of closed-loop decision-making, operators are reluctant to relinguish

their control of a system to automated subsystems.

As recording instrumentation becomes more miniaturized, some of these

objections will disappear. There are now several "pocket-size" amplifier/

recording systems available for ambulatory monitoring (e.g. the SSPIDR, see

Banta's paper in this Proceedings). On-board storage of physiological data is

now achieved with either cassette tape or solid-state memories. Optical disk

media may soon provide still further storage capacity. Telemetry systems are

likewise becoming smaller and more sophisticated. "Paste-less" electrodes have

been a possibility for some time, but require further refinement. Integrating

electrodes and amplifiers into helmets and uniforms remains a challenge, but is

being addressed by several groups. The palatability of using physiological

measures in closed-loop control systems will be increased by giving the

operator the ability to override the decisions reached by the on-board

decision-making algorithms, and by introducing this technology as an open-loop

"aid" to the operator until the decision rules mature to the point that they

warrant the operator's confidence. As for the objections which can't be

addressed with instrumentation, one suspects that as the value of physiological

measures becomes more apparent and the safety implications of not having them

is more widely recognized, these problems will largely take care of
themselves.

Safety issues. Any tethering of the pilot to recording equipment must be done

in a way that does not distract or impede him from performing his duties. In

some environments, such as fighter aircraft where the aircrew must be able to

eject if necessary, this requirement dictates a telemetry system for

transmitting the amplified physiological signals to on-board or remote

processing equipment or an entirely portable physiological recording system

that can be carried on the operator's person (e.g., Ref. 46). Furthermore, the

recording equipment must be electrically integrated with the other equipment

with which the operator interacts, so that there is no shock hazard when he

touches the control stick or instrument panel.
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Here again, advances in micro-electronics are allowing increased

miniaturization, and thus portability, of amplifiers, storage media and

telemetry systems. Amplifiers can be designed with fail-safe features to

protect the subject against internal shorts in the circuitry, and the

possibility of such failures can be minimized by "hardening" physiological

recording equipment, using the same methods that are used for other on-board

electronic instrumentation, for use in even high-vibration environments. If

telemetry is used, it must be accomplished with a technique or in a frequency

range that does not interfere with other on-board equipment. Ensuring against

shock hazard involves issues of electrical grounding that can usually be
readily solved with cooperation from system engineers.

Artifact Reiection _nd Comp_nsetion. There are two sets of issues regarding

contamination of recordings by artifact -- one involving electrical artifacts

from the environment and the other involving physiological artifacts from the

subject himself. Most operational settings are electrically noisy

environments, so aside from the above safety issues, appropriate shielding and

grounding must be implemented in order to get clean physiological recordings.

Miniaturization of amplifier electronics and efforts to integrate this

circuitry into helmets and suits, offers the prospects of placing the amplifier

circuitry on or in close proximity to the electrodes, which should increase

noise-immunity considerably. Such integration, which could include

custom-fitting the electrode mounts for individual operators, will also

minimize artifacts caused by even slight displacements of an electrode relative

to the skin. Fortunately, some of the power supplies in fielded operational

systems oscillate at frequencies considerably higher than the physiological

signals of interest, so bandpass filters attentuate such noise sources more

readily than the 60 Hz interference which can be a problem in the laboratory.

Appropriate notch filters, akin to the 60 Hz filters used in many conventional

amplifiers, can also be custom-designed for specific operational settings, as

long as the frequencies being attenuated are sufficiently disparate from the

physiological spectrum of interest.

Physiological artifacts from the operator himself can be more troublesome.

As alluded to above, electrophysiological recordings of one physiological

parameter can be contaminated by other physiological parameters with

overlapping frequency components. For example, EEG and ERP recordings can be

contaminated by eye blinks, heart beat, and muscle artifacts. Furthermore,

excessive sweating can elicit skin potentials that interfere with the

physiological measures of interest or can cause electrodes to be more easily

dislodged. These problem s dictate the need for innovative electrode designs,

well-integrated into the operators clothing and other equipment, as well as the

need for "intelligent" digital filtering algorithms (e.g., Ref. 47) to rid the

recording of artifact.

Real-time Turnaround. As discussed in the "Areas of Application" section, many

potential uses of physiological measures in operational settings do not require

real-time turnaround of data analyses. In fact, most recordings to date in

simulators or fielded systems have stored the amplified physiological signs on

either analog or digital media for off-line analysis. Only recently have

systems appeared with some on-board computing power (e.g. the SSPIDR), but even

here the decision-making capability has thus far been limited to making

intelligent decisions about when to store data into the limited-capacity memory

for off-line analysis. The possibilities for real-time analysis of
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physiological data, the use of derived measures for real-time decision-making,

and the realization of closed-loop feedback based on the resultant decisions as

an input to adaptive systems are areas that need to be pursued more

aggressively. A reasonable way to proceed on this front would seem to be an

initial focus on the development of pattern recognition algorithms for "single

trial" extraction of useful indices from records of ongoing physiological

activity, followed by non-real-time demonstrations of how these derived indices

would be used for making useful decisions about operator status. Only then

need there be an attempt to "speed-up" this process to real-time, perhaps by

implementing the mature algorithms in special-purpose hardware.

Knowledge-based Interpretation of Physiological Measures. Whether or not

real-time turnaround is required for certain applications in operational

settings, there will certainly be the need for more automated means of

interpreting physiological data than are presently available. Expert system

techniques for encoding knowledge and applying decision rules offer

possibilities as a framework for such automated interpretation, although it is

not yet clear how complicated the decision-rules and contingencies will need to

be. It is apparent, given the aforementioned cautions that have been raised

about inferring mental states from physiological measures alone (Ref. 2), that

it will be necessary to take into account simultaneously derived measures of

operator behavior and system performance as a whole. Very little work has been

done in modeling the integration of physiological, behavioral and system

performance data. The paper by Samaras' in the present Proceedings offers one

possible framework for such an integration. Appropriate decision rules

relating changes in physiological signs to mental states or predicted

performance can be derived initially from the biomedical and

psychophysiological literatures. However, refinements of these decision rules

and proof-of-concept demonstrations will likely require the use of realistic

scenarios in simulator environments.

SUPPIAB_Y OF AREAS FOR FURTHER DEVELOPIk_]T

The foregoing discussion has attempted to provide an overview of the

state-of-the-art and the challenges that lie ahead "in the field," as

physiological monitoring technology expands from the laboratory .into

operational settings. Although valid physiological measures have been recorded

already in a number of demanding operational settings, including advanced

cockpits, the methodologies for implementing such measures have been largely

special-purpose and cumbersome. The successes to-date merely foreshadow the

possibilities that exist, as conceptual and engineering advances continue. The

following list summarizes a number of the areas that are fertile ground for

further development:

Advances in physiological sensor design and better ways of mounting

electrodes in an operator's helmet, clothing, or other gear.

o Further miniaturization of amplifiers, digitizers, storage media, and

telemetry equipment, along with design features to maximize noise-immunity

and integration into the operator's physical environment.

o Digital filtering algorithms to minimize the contamination of recordings by

artifacts, both those due to electrical sources in the environment and

those due to physiological sources within the subject.
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o Special purpose data analysis software or firmware that can process the

recorded signals in near real-tlme.

o Modeling of mental states and task environments to allow physiological

measures to be taken into account, along with behavioral, subjective, and

'system performance measures, in interpreting and predicting performance.

o Empirical work to develop decision algorithms for inferring the operational

significance of operator physiological changes and for "closing the loop"
between man and machine.
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